If it's not what You are looking for type in the equation solver your own equation and let us solve it.
600t-4.9t^2+20=0
a = -4.9; b = 600; c = +20;
Δ = b2-4ac
Δ = 6002-4·(-4.9)·20
Δ = 360392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360392}=\sqrt{4*90098}=\sqrt{4}*\sqrt{90098}=2\sqrt{90098}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(600)-2\sqrt{90098}}{2*-4.9}=\frac{-600-2\sqrt{90098}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(600)+2\sqrt{90098}}{2*-4.9}=\frac{-600+2\sqrt{90098}}{-9.8} $
| (X*x)+5x=23 | | 6(x+10)=94-6x | | 5x+1=62 | | w-2w-1=8-3w-3w= | | 39+6b=-3(8-5b) | | 3x-1=-11x+19 | | -2(y+-4)=4 | | 102+65z+7z=5z+6z-81z= | | 11v+18=10v | | 3x−5=2.5x+3−(x−4) | | -15k+13+9k=-19-8k | | -30+6x=-8(-6-4x) | | 17=-5t | | (6a-54)-(5a+27)=27 | | 9.77=3c+5 | | 7x-15=4(x-5)+3x+5 | | 2x-6=3x+9-3 | | 6(-24x+4=96 | | -7(v+3)3v+6=8v+8 | | 10(x-4)=34+4x | | 3c+8c=18+c+7cc= | | (x-1)(4x+5)=(2x-3)^2 | | v-3/v+5=12/7 | | 3(2c+1)=45 | | ^(2)-4x+4=0 | | 1/3x=x+16 | | 4x-26+5x+3+112=180 | | 10=4p+6p | | -8(r+8)=20+6r | | 7x-10+9x-11=28 | | x(x+2)=13 | | 11+5x=-76 |